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Abstract

We investigate level-set-type methods for solving ill-posed problems with

discontinuous (piecewise constant) coefficients. The goal is to identify the

level sets as well as the level values of an unknown parameter function on

a model described by a nonlinear ill-posed operator equation. The PCLS

approach is used here to parametrize the solution of a given operator equation

in terms of a L2 level-set function, i.e. the level-set function itself is assumed

to be a piecewise constant function. Two distinct methods are proposed for

computing stable solutions of the resulting ill-posed problem: the first is

based on Tikhonov regularization, while the second is based on the augmented

Lagrangian approach with total variation penalization. Classical regularization

results (Engl H W et al 1996 Mathematics and its Applications (Dordrecht:

Kluwer)) are derived for the Tikhonov method. On the other hand, for

the augmented Lagrangian method, we succeed in proving the existence of

(generalized) Lagrangian multipliers in the sense of (Rockafellar R T and

Wets R J-B 1998 Grundlehren der Mathematischen Wissenschaften (Berlin:

Springer)). Numerical experiments are performed for a 2D inverse potential

problem (Hettlich F and Rundell W 1996 Inverse Problems 12 251–66),

demonstrating the capabilities of both methods for solving this ill-posed

problem in a stable way (complicated inclusions are recovered without any

a priori geometrical information on the unknown parameter).

(Some figures may appear in colour only in the online journal)
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1. Introduction

1.1. Ill-posed problems and adequate parameter spaces

Several ill-posed inverse problems of interest consist of identifying an unknown physical

quantity, u ∈ X , that can be represented by a piecewise constant real function over a bounded

given domain Ä, from the set of data y ∈ Y , where X , Y are Hilbert spaces. The relation

between the unknown parameter function and the problem data is typically described by the

(possibly nonlinear) model

F(u) = y, (1)

where F : D(F ) ⊂ X → Y ; meaning that the set of data is obtained by indirect measurements

of the parameter. In practical applications, the exact data y ∈ Y are, in general, not known. One

is given only approximate measured data yδ ∈ Y , corrupted by noise of level δ > 0, satisfying

‖yδ − y‖Y 6 δ. (2)

In the case where the unknown function u is piecewise constant distinguishing between

two given values, level-set approaches were considered in [36, 27, 20, 6–9, 14, 28]. In this

case, since the level values of u are known, one needs only to identify the level sets of

u, and the problem in (1) reduces to a shape identification problem. In the case where the

unknown function u is a piecewise constant function distinguishing between several given

values, multiple level-set approaches were considered in [8, 10, 13].

If the level values of u are also unknown, then the inverse problem becomes harder, since

one has to identify both the level sets and the level values of the unknown parameter u. In this

case, the dimension of the parameter space increases by the number of unknown level values

[39, 40].

The methods discussed in this paper are designed to solve the operator equation (1) under

the assumption that the parameter function u is a piecewise constant function taking only two

possible (unknown) values, i.e. u(x) ∈ {c1, c2} a.e. inÄ ⊂ R
d . In other words, one can assume

the existence of an open measurable set D ⊂⊂ Ä s.t.

u(x) = c1 , x ∈ D =: D1 and u(x) = c2 , x ∈ Ä/D =: D2. (3)

The list of relevant applications matching this framework is large (see, e.g., [39, 41, 14,

38, 9, 7] and the references therein). It is worth mentioning that the methods presented here

can be extended in a straightforward way to the case where the unknown parameter takes any

finite number of values [32, 13, 37].

1.2. PCLS framework: reparametrizing the parameter space

In this paper, a piecewise constant level-set (PCLS) approach [32, 44] is used to represent the

unknown parameter in (1) of the form (3), i.e. the L∞-function u can be represented using

a smooth operator Ppc : L2(Ä) → L2(Ä) and a discontinuous (piecewise constant) level-set

function φ ∈ L2(Ä). Here we assume that φ(x) = i−1, x ∈ Di, withDi defined as in (3). Note

that, using the auxiliary functions ψ1(t) := 1− t and ψ2(t) := t, the characteristic functions

of the subdomains Di can be written in the form χDi
(x) = ψi(φ(x)), i = 1, 2. Therefore, a

solution u of (1) can be parametrized by the operator

u = c1ψ1(φ) + c2ψ2(φ) =: Ppc(φ, c j). (4)

The piecewise constant assumption on φ corresponds to the constraint K(φ) = 0, where

K(φ) := (φ)(φ − 1) is a smooth nonlinear operator. The constraint described by K(φ) = 0
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can alternatively be expressed in the form K(φ) = 0, where K(φ) =
√

|φ| |φ − 1|. Note that,
differently from K(·), the operator K(·) is not differentiable.

An alternative way (commonly found in the literature) to represent the piecewise constant

assumption on φ is given by the double well potentials (φ)2n(φ − 1)2n = 0, n ∈ N [44].

Here, we use a low-order polynomial to represent this constraint. The advantage of this choice

resides in the fact that the corresponding operator K is continuous from L2(Ä) to L1(Ä). On

the other hand, the operator K is continuous from L2(Ä) to L2(Ä). Such regularity properties

(which are necessary for the analysis derived in section 2) are not shared by the double well

potentials above.

Within this framework, the inverse problem in (1), with data given as in (2), and solution

of the form (3), can be written in the form of the abstract operator equation

F(Ppc(φ, c j)) = yδ , where φ ∈ {L2(Ä); K(φ) = 0} and c j ∈ R. (5)

Remark 1 (A few words on the PCLS framework). Continuous level-set functions. Iterative

methods based on this framework produce a sequence of level-set functions which are typically

continuous. Only at the end of the iterative process, a PCLS (i.e. a function satisfying the

constraint K(φ) = 0) is obtained [38].

Relation to phase field methods. Level-set methods based on the PCLS framework belong

to the family of binary level-set methods [32, 44], which are similar to the well-known phase

field methods [2, 1, 4] used for phase transition type problems.

PCLS approach versus standard level-set approach. The standard level-set approach

[36, 27] for problem (1) consists in introducing a smooth level-set functionφ (e.g.,φ ∈ H1(Ä))

which acts as a regularization of the parameter space. The discontinuities of the parameter u

are represented implicitly by the zero level-set of φ. In this approach, the Heaviside projector

H is used to represent a solution of (1) in the form u = c2H(φ)+c1(1−H(φ)) =: Pls(φ, c j).

Here u(x) = ci, x ∈ Di, where the sets Di correspond to D1 = {x ∈ Ä ; φ(x) > 0}
and D2 = {x ∈ Ä ; φ(x) < 0}. Thus, the operator Pls establishes a straightforward relation

between the level sets of φ and the sets Di, representing the a priori knowledge about the

solution u.

Within this framework, the inverse problem in (1), with data given as in (2), can be written

in the formof the operator equationF (Ps(φ, c j)) = yδ . In order to obtain approximate solutions

to this equation, different regularization schemes have been proposed in the literature so far,

e.g., Tikhonov regularization using TV [7, 8, 37], or Tikhonov regularization using TV -H1

[20, 13].

1.3. Main contributions

The main contribution of this paper is to address two reconstruction methods for solving

equation (5) in a stable way. The first one consists essentially in applying Tikhonov

regularization with total variation penalization [20] to the system:
[
F(Ppc(φ, c j)) , K(φ)

]
=[

yδ , 0
]
.

The second method is based on the augmented Lagrangian approach [3, 25] for a

(regularized) constrained optimization problem corresponding to the operator equation (5).

From the numerical point of view, augmented Lagrangian methods have been intensively

investigated in the imaging community in connection to binary reconstruction problems

[32, 26, 44]. From the analytical point of view, these methods were considered in [18, 19, 42]

3
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1.3.1. First reconstruction method: Tikhonov regularization. Approximate solutions to (5)

can be obtained by minimizing the Tikhonov functional

Gα(φ, c j) := ‖F(Ppc(φ, c j)) − yδ‖2Y + µ‖K(φ)‖L1 + α
{
|Ppc(φ, c j)|BV + ‖c j‖2

R2

}
. (6)

Note that the minimization of the functional Gα furnishes a regularized solution to the system

of operator equations:
[

F(Ppc(φ, c j))

K(φ)

]
=

[
yδ

0

]
. (7)

The penalization term in (6) corresponds essentially to TV regularization, while µ > 0 plays

the role of a scaling factor balancing the misfits of the two operator equations. (The correct

choice of the constant µ is very important in practical applications, since the first misfit term

depends crucially on the scale of the data, while the second does not.)

It is worth noting that, in the limit case α → 0, 4 the minimizers (φα, c
j
α ) of Gα converge

to some limit (φ, c j) satisfying F(Ppc(φ, c)) = y and K(φ) = 0 (see theorem 4 below).

Thus, the limit level-set function φ is indeed piecewise constant (as suggested by the acronym

PCLS).

Here, we extend the Tikhonov regularization approach in [13] to the functional Gα in (6),

and prove convergence and stability results for the proposed variational approach.

In [12], a similar Tikhonov functional was investigated (numerically) in connection with

the PCLS framework, and a corresponding iterative method was derived. Here we are able

to improve the efficiency of that iterative method by appropriately choosing the parameter µ.

Namely, instead of choosing µ constant along the iterations, we propose starting the iteration

with a small value µ0 and slowly increase it with the iteration. This allowed us to reduce the

numerical effort to the half (see numerical experiments in section 5.2).

1.3.2. Second reconstruction method: augmented Lagrangian. Approximate solutions to (5)

can be obtained by applying the augmented Lagrangian method to the regularized constrained

optimization problem
{
minFα(φ, c j) := ‖F(Ppc(φ, c j)) − yδ‖2 + α

{
|Ppc(φ, c j)|BV + ‖c j‖2

R2

}
,

s.t. φ ∈ {L2(Ä); K(φ) = 0}.
(8)

Due to lack of convexity of the constraint K(φ) = 0 and the functional Fα , classical

Lagrange methods [34, 3] cannot be applied in a straightforward way to solve the constrained

optimization problem (8). Alternatively, we introduce the (augmented) Lagrangian functional

GL,α , which is formally defined by

GL,α(φ, c j; λ,µ) := ‖F(Ppc(φ, c j)) − yδ‖2Y + µ‖K(φ)‖L2 +
∫
Ä

λK(φ)

+α
{
|Ppc(φ, c j)|BV + ‖c j‖2

R2

}
, (9)

and search for ‘generalized’ multipliers (λ, µ) in the sense of [35, chapter 11.K∗] (see also
[30, chapter 5]). The scalar µ > 0 in (9) is a penalty factor that allows one to establish a

duality relation for problems of non-convex type, while the L2(Ä)-vector λ can be interpreted

as a ‘generalized’ Lagrange multiplier.

According to the abstract augmented Lagrangian framework followed here, one aims to

find a vector λ̄ supporting an exact penalty representation for the primal problem, as well as

a corresponding penalty factor µ̄ (see definition 3 in section 3). Once such a pair (λ̄, µ̄) is

4 Recall that in the presence of noise, δ > 0, the regularization parameter α is a function of the noisy level, i.e.

α = α(δ); see theorem 4.
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known, an approximate solution to (7) can be found by solving an unconstrained optimization

problem (just as in the classical Lagrange theory).

The augmented Lagrangian approach followed here can be seen as a combination of

the penalty function method and the Lagrangian multiplier method and is able to eliminate

many disadvantages associated with either method alone [3]. In comparison with the quadratic

penalty method for constrained optimization problems, the convergence of the augmented

Lagrangian method usually does not require the penalty parameter to tend to infinity [3]. This

result eliminates (or at least moderates) the ill-conditioning in the penalty method.

Another advantage of the augmented Lagrangian method is that its convergence rate is

considerably better than that of the penalty method (see [35, 3] and section 4). It is worth

noting that the existence of an exact penalty function for the particular primal problem (8) is

essential for the successful analysis of this approach.

The penalization term in (9) has the same meaning as the one in (6), and α > 0 plays the

role of a regularization parameter.

1.4. Outline of the paper

In section 2, we present a convergence analysis for the Tikhonov method (6) based on the

PCLS approach. A corresponding algorithm is derived (see subsection 2.1). In section 3, we

present a convergence analysis for the augmented Lagrange method (9) based on the PCLS

approach. A corresponding algorithm is presented in subsection 3.1. Section 4 is devoted to

the investigation of numerical methods. The benchmark two-dimensional inverse potential

problem is introduced [20, 13]. A numerical algorithm (of PCLS type) based on the Tikhonov

method is derived and discussed for solving this inverse problem. A second algorithm (of

PCLS type) based on the augmented Lagrangian method is derived and implemented for the

same inverse problem. In section 5, numerical tests with the proposed algorithms are presented.

Experiments with exact and noisy data are both considered, and the performances of the two

reconstruction methods proposed in this manuscript are compared.

2. PCLS approach and the Tikhonov method

We start this section briefly recalling some results related to the convergence analysis of the

regularization method based on the PCLS approach.

We shall consider the model problem described as in the introduction under the following

general assumptions.

(A1) Ä ⊆ R
d , d = 2, is bounded with piecewise C1 boundary ∂Ä.

(A2) The operator F : D ⊂ Lp(Ä) → Y is continuous and Fréchet-differentiable on D with

respect to the Lp-topology, where 1 6 p < d/(d − 1) = 2.

(A3) α and µ denote positive parameters.

(A4) There exists û ∈ L∞(Ä) satisfying F(û) = y. Moreover, there exists a function

φ̂ ∈ BV(Ä) ⊂ L2(Ä) and constants ĉ1 6= ĉ2 ∈ R such that Ppc(φ̂, ĉ j) = û and K(φ̂) = 0.

Let D̃ ⊂ Ä be a open and bounded subset, with the Lebesgue measure |D̃| > γ > 0 for a

fix γ . We define the following subset of BV:

BV0(Ä) := {φ ∈ BV(Ä) : φ(x) = 0, a.e. x ∈ D̃}. (10)

A straightforward consequence of the definition of Ppc(·, ·) is that, for fixed constants
c j, this operator is 1-1, continuous and continuously differentiable from L2(Ä) onto L2(Ä).

Consequently, the set of admissible vectors for the Tikhonov functional in (6) is defined in the

following way.

5
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Definition 1. Let the operator Ppc defined as in (4) and τ > 0. A vector (φ, c j) ∈ L2(Ä) × R
2

is called admissible when φ ∈ BV0(Ä) and |c2 − c1| > τ .

From (4), it follows that Ppc maps admissible vectors to BV(Ä). Next we briefly recall

some basic facts about the space BV(Ä). For a proof, we refer the reader to [17, chapter 5].

Lemma 1. The following assertions hold true.

(i) The semi-norm | · |BV is weakly lower semi-continuous with respect to Lp-convergence,

i.e. if {xk} ∈ BV(Ä) converges to x in the Lp-norm, then x ∈ BV(Ä) and |x|BV 6

lim infk→∞ |xk|BV.

(ii) BV(Ä) is compactly embedded in Lp(Ä) for 1 6 p < d/(d − 1). Consequently, any

bounded sequence {xk} ∈ BV(Ä) has a subsequence converging in Lp(Ä) to some

x ∈ BV(Ä).

The following lemma is devoted to the investigation of relevant properties of operators K

and Ppc, respectively.

Lemma 2. Let K, K be the operators defined in section 1 and Ppc the operator defined in (4).

For 1 6 p < 2, the following assertions hold true.

(i) K and K are continuous maps from L2(Ä) to L1(Ä) and from L2(Ä) to L2(Ä) respectively;

additionally the functional ‖K(·)‖L1 , defined in L2(Ä), is weakly lower semi-continuous.

(ii) If ‖K(φ)‖L1 = 0 or ‖K(φ)‖L2 = 0 for some φ ∈ L2(Ä), then φ(x) ∈ {0, 1} a.e. in Ä.

(iii) For every admissible vector (φ, c j) we have |Ppc(φ, c j)|BV > τ |φ|BV.

(iv) BV0(Ä) is a closed subset of BV(Ä) with respect to the Lp(Ä) convergence. In other

words, if φk ∈ BV0(Ä) is a sequence converging to φ ∈ BV(Ä) with respect to the

Lp(Ä)-topology, then φ ∈ BV0(Ä).

(v) For every admissible vector (φ, c j), there exist a constant c > 0 such that |Ppc(φ, c j)|BV >

c‖φ‖L2(Ä).

Moreover, if (φk, c
j

k
) is a sequence of admissible vectors converging in Lp(Ä) × R

2 to

some admissible vector (φ, c j), then

(vi) Ppc(φk, c
j

k
) converges to Ppc(φ, c j) in Lp(Ä).

(vii) |Ppc(φ, c j)|BV 6 lim infk→∞ |Ppc(φk, c
j

k
)|BV.

Proof. The continuity of K follows from
∫
Ä

|K(φ) − K(ψ)| 6
∫
Ä

|φ| |φ − ψ | +
∫
Ä

|ψ −
1| |ψ − φ|, together with the Cauchy–Schwarz inequality. The continuity of K follows from a

similar argumentation (additionally, one has to apply the inequality 2ab 6 a2 + b2).

To verify the last assertion of item (i), note that equation K(φ) = 0 in (7) is equivalent

to K̃(φ) = 1/4, where K̃(φ) := K(φ) + 1/4. Thus, it is enough to prove that the functional
‖K̃(·)‖L1 is weakly l.s.c. Since the real function t 7→ |K̃(t)| is convex, this property follows
from Dacorogna [11, theorem 1.1, p 7; and subsequent remark, p 8]. Assertion (ii) follows

immediately form the definition of K and K.

Assertion (iii) follows form [12, lemma 9 (i)]. Minkowski inequality imply
(∫

D̃

|φ|pdx

) 1
p

6

(∫

D̃

|φ − φk|pdx

) 1
p

+
(∫

D̃

|φk|pdx

) 1
p

6 ‖φ − φk‖Lp(Ä),

and (iv) is proved. Assertion (v) follows from assertion (iii) and the Poincaré inequality for

BV functions [17, theorem 1, item (ii), p 189]. Finally, items (vi) and (vii) follows from [12,

lemma 9, items (ii) and (iii)], respectively. ¤

6
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Note that lemma 2 (v) guarantees the coercivity of the functional |Ppc(·, ·)|BV (w.r.t.
the L2-norm) on the set of admissible parameters. This lemma contains the essential

tools needed to derive the main convergence analysis results for the PCLS approach. Let

Rpc(φ, c j) := |Ppc(φ, c j)|BV + ‖c j‖2
R2
be the penalization term of Gα in (6). Given α, µ > 0,

the next result guarantees the well posedness of functional Gα .

Theorem 3. The functional Gα in (6) attains minimizers on the set of admissible vectors.

Proof. Let {(φk, c
j

k
)} be a minimizing sequence for Gα , i.e. a sequence of admissible vectors

satisfying Gα(φk, c
j

k
) → infGα , k → ∞. Then, {Rpc(φk, c

j

k
)} is a bounded sequence of real

numbers and it follows from lemma 2 (v) the existence of a subsequence {φk} and φ ∈ L2(Ä)

such that φk ⇀ φ in L2(Ä). Moreover, from lemma 2 (iii) and lemma 1 (ii) we conclude that

φ ∈ BV(Ä) and that this subsequence also satisfiesφk → φ inLp(Ä). Therefore, from lemma

2 (iv), φ ∈ BV0 .

On the other hand, the boundedness of{Rpc(φk, c
j

k
)} also guarantees the existence of

subsequences {c j

k
} converging to c j in R

2.

Clearly(φ, c j) is an admissible vector. Moreover, from (A2), lemma 2 (i), (vi) and (vii) it

follows that

inf Gα = lim
k→∞

Gα(φk, c
j

k
)

= lim inf
k→∞

{
‖F(Ppc(φk, c

j

k
)) − yδ‖2Y + µ‖K(φk)‖L1 + αRpc(φk, c

j

k
)
}

> ‖F(Ppc(φ, c j)) − yδ‖2Y + µ‖K(φ)‖L1 + αRpc(φ, c j) = Gα(φ, c j),

proving that (φ, c j) minimizes Gα . ¤

Standard convergence and stability results (cf [12, theorem 7] or [13, theorems 8 and 9])

hold true for the Tikhonov method based on the PCLS approach. The proof uses classical

techniques from the analysis of Tikhonov-type regularizationmethods [16] and thus is omitted.

Theorem 4. Assume that we have exact data, i.e. δ = 0 in (2), and µ > 0. For every α > 0

denote by (φα, c
j
α ) a minimizer of Gα on the set of admissible vectors. Then, for every sequence

of positive numbers {αk} converging to zero there exists a subsequence such that (φαk
, c

j
αk

) is

strongly convergent in Lp(Ä) × R
2. Moreover, the limit is a solution of (7) with yδ = y.

In the case of noisy data, let α = α(δ) be a positive function with limδ→0 α(δ) = 0

and limδ→0 δ2/α(δ) = 0. Given a sequence {δk} of positive numbers converging to zero and

{yδk} ∈ Y be corresponding noisy data satisfying (2), there exist a subsequence, denoted again

by {δk}, and a sequence {αk := α(δk)} such that (φαk
, c

j
αk

) converges in Lp(Ä) × R
2 to a

solution of (7) with yδ = y.

Note that the limit elements (φ, c j) obtained from the convergence-stability theorem 4

satisfy not only F(Ppc(φ, c j)) = y, but also ‖K(φ)‖L1 = 0. Therefore, due to lemma 2 (ii),

we conclude that the limit level-set function φ is piecewise constant.

2.1. An iterative algorithm based on the Tikhonov method

The iterative algorithm based on the regularization method for PCLS approach proposed in

this paper is an explicit iterative method based on the operator splitting technique [21, 29] and

derived from the optimality conditions for the Tikhonov functional Gα in (6). First the operator

Gα is split in the sum Gα(φ, c j) = G1α(φ, c j) + G2α(φ), where

G
1
α(φ, c j) := ‖F(Ppc(φ, c j)) − yδ‖2Y + α

{
|Ppc(φ, c j)|BV + ‖c j‖2

R2

}

G
2
α(φ) := µ‖K(φ)‖L1(Ä).

7
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Each step of the iterative method consists of two parts.

(i) The iterate (φk, c
j

k
) is updated using an explicit gradient step w.r.t. the operator G1α , i.e.

φk+1/2 := φk − ∂

∂φ
G
1
α(φk, c

j

k
) , c

j

k+1/2 := c
j

k
− ∂

∂c j
G
1
α(φk, c

j

k
) , (11)

where

∂

∂φ
G
1
α(φ, c j) = (c2 − c1)F ′(Ppc(φ, c j))∗[F(Ppc(φ, c j)) − yδ]

−α
2
(c2 − c1)∇·

[
∇Ppc(φ)/|∇Ppc(φ)|

]
, (12a)

∂

∂c1
G
1
α(φ, c j) =

[
F ′(Ppc(φ, c j))(1− φ)

]∗
(F(Ppc(φ, c j)) − yδ ),

−α
2
(1− φ)∇·

[
∇Ppc(φ)/|∇Ppc(φ)|

]
+ c1, (12b)

∂

∂c2
G
1
α(φ, c j) =

[
F ′(Ppc(φ, c j))(φ)

]∗
(F(Ppc(φ, c j)) − yδ )

−α
2
(φ)∇·

[
∇Ppc(φ)/|∇Ppc(φ)|

]
+ c2. (12c)

(ii) The obtained approximation (φk+1/2, c
j

k+1/2) is improved by giving a gradient step w.r.t.

the operator G2α , i.e.

φk+1 := φk+1/2 − d

dφ
G
2
α(φk+1/2) , c

j

k+1 := c
j

k+1/2 , (13)

where

∂

∂φ
G
2
α(φ) = µ (2φ − 3)K(φ)/|K(φ)| , (14)

In [38], a similar operator splitting strategy was used to minimize a Tikhonov functional

related to an elliptic inverse problem in EIT. For a comprehensive study of operator splitting

methods we refer the reader to Glowinski’s book [21].

In the numerical implementation of the algorithm described above, the issue of the choice

of µ is critical.

If a large value of µ is chosen, then the iterates φk satisfy the constraint K(φk) = 0

(i.e. become piecewise constant) after a few steps and the iteration stagnates. However, the

corresponding approximate solution Ppc(φk, c
j

k
) is far from the true parameter.

Typically, a very small constant valueµ > 0 has to be chosen. This allows the computation

of a much precise approximation for the true parameter. However, this choice of µ leads to a

very slow convergence of the operator splitting scheme, since a large number of iterative steps

is required in order to enforce the constraint K(φk) = 0.

This facts suggested the use of a slight variation of the iteration described above. Instead

of choosing a constant value for µ, we start the algorithm above using a small value µ = µ0
(i.e. the operator splitting scheme consists basically of it’s first part). During the iteration,

the value of µ increases gradually according to a pre-defined strategy [38]. This alternative

implementation of the operator splitting scheme leads to much faster and stable algorithm, as

discussed in section 5.

Remark 2. The PCLS approach described above is characterized by a constraint enforcing

either φ = 0 or φ = 1 inÄ. It is worth noting that the resulting (two steps) level-set algorithm

relates to the phase field method used by the dynamic interface community to analyze front

propagation problems [2, 5].
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3. PCLS approach and augmented Lagrangian

This section is devoted to the analysis of the augmented Lagrangian approach introduced in

section 1. In what follows, we prove two main results: (i) existence of zero duality gap5; (ii)

exact penalty representation for the duality scheme induced by the augmented Lagrangian

function (9).

The main tool in our analysis is abstract convexity, which recently became a natural

language to investigate duality-schemes via augmented Lagrangian-type functions [35].

For the rest of this section, we adopt the notation:

• Ŵ is the set valued function satisfying Ŵ(z) := {φ ∈ L2(Ä); K(φ) = z}, z ∈ L2(Ä).

• The set distance function in L2(Ä) is denoted here by δ (recalling, this is the function

defined by δA(z) := 0, if z ∈ A and δA(z) := +∞, otherwise).
In the following, we introduce some functions that are necessary for the forthcoming

analysis:

• F̃α(φ, c j) = Fα(φ, c j), if φ ∈ Ŵ(0) and F̃α(φ, c j) = +∞, otherwise.
• A dualizing parametrization function [35] for F̃α is chosen in the following way:

f : L2(Ä) × R
2 × L2(Ä) → R, f (φ, c j, z) := Fα(φ, c j) + δŴ(z)(φ). The function f

satisfies the property f (φ, c j, 0) = F̃α(φ, c j), (φ, c j) ∈ L2(Ä) × R
2.

• The perturbation function (of the primal problem) related to this duality parametrization,
is given by θ : L2(Ä) → R, θ (z) := inf(φ,c j )∈L2(Ä)×R2 f (φ, c j, z). Note that assumption

(A4) guarantees θ (0) < +∞.
• A coupling function ρ : L2(Ä) × L2(Ä) × R+ → R is defined by ρ(z, λ, µ) :=

−〈λ, z〉 − µ ‖z‖L2
, where 〈·, ·〉 denotes the usual L2-inner product.

• The augmented Lagrangian functional induced by the coupling function ρ reads

GL,α(φ, c j; λ,µ) = infz∈L2(Ä){ f (φ, c j, z) − ρ(z, λ, µ)}.

It is straightforward to verify that, with the above definitions, GL,α(φ, c j; λ,µ) coincides

with the functional introduced in (9). Moreover, GL,α(φ, c j; λ,µ) also coincides with

Fα(φ, c j) in (8) whenever K(φ) = 0.

• Next we introduce the dual function, which is the mapping Q : L2(Ä) × R+ → R defined

by Q(λ, µ) := inf(φ,c j )∈L2(Ä)×R2 GL,α(φ, c j; λ,µ).

Remark 3.Using the definitions above, it is immediate to see that the constrained optimization

problem (8) is equivalent to the (primal) problem min(φ,c j ) F̃α(φ, c j). The corresponding

dual problem reads: max(λ,µ) Q(λ, µ). Moreover, the dual function satisfies the identity

Q(λ, µ) = infz{θ (z) − ρ(z, λ, µ)}.
In this framework, weak duality means that Vd := sup(λ,µ) Q(λ, µ) 6

inf(φ,c j ) F̃α(φ, c j) =: Vp, while strong duality corresponds to Vd = Vp, where Vp and Vd

denote the optimal values for the primal and dual problem respectively.

In the following definition, the Fenchel–Moreau conjugated and biconjugated functions

are introduced. These functions furnish a natural way to verify weak and strong duality, as we

shall see below. The second part of the definition concerns abstract subgradients, which are

needed in the proof of our strong duality result.

5 For non-convex constrained optimization problems, a nonzero duality gap may occur when an ordinary Lagrangian

functional is used [43, 35].
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Definition 2 ([35, chapter 11]). The Fenchel–Moreau conjugated and biconjugated functions

of θ with respect to the coupling function ρ are defined respectively by

θρ (λ, µ) = sup
z∈L2(Ä)

{ρ(z, λ, µ)−θ (z)} and θρρ (z) = sup
(λ,µ)∈L2(Ä)×R+

{ρ(z, λ, µ)−θρ (λ, µ)}.

Moreover, given ǫ > 0, an element (λ, µ) ∈ L2(Ä)×R+ is called ǫ-abstract subgradient of θ

at z̄ with respect to ρ when θ (z) − ρ(z, λ, µ) > θ (z̄) − ρ(z̄, λ, µ) − ε, for all z ∈ L2(Ä). The

set of all ε-abstract subgradients of θ at z̄ is called ǫ-subdifferential of g at z̄ and is denoted

by ∂ρ,εθ (z̄).

Remark 4.Note that the perturbation function θ is lsc at z = 0. Moreover, from the definitions

of θρ and θρρ it follows that dom(θρ ) 6= ∅, θρ (λ, µ) = −Q(λ, µ) and θρρ (z) 6 θ (z).

In the following lemma, we prove some regularity properties of ρ.

Lemma 5. The following assertions hold true.

(i) For any (λ, µ) ∈ L2(Ä) × R+ the function ρ(·, λ, µ) is upper semi-continuous at 0 and

satisfies ρ(0, λ, µ) = 0.

(ii) For every neighborhood V ⊂ L2(Ä) of z = 0 and for every (λ, µ̄) ∈ L2(Ä)×R+, it holds

(a) AV
λ,µ̄(µ) := infz∈VC{ρ(z, λ, µ̄) − ρ(z, λ, µ)} > 0, ∀µ > µ̄;

(b) limµ→∞ AV
λ,µ̄(µ) = ∞.

Proof. The continuity of ρ as well as the property ρ(0, λ, µ) = 0 follow from the definition

of the coupling function, proving assertion (i). Assertion (ii) is a consequence of the identity

ρ(z, λ, µ̄) − ρ(z, λ, µ) = (µ − µ̄)‖z‖L2
. ¤

Lemma 6. The weak duality property holds true, i.e. Vd 6 Vp.

Proof. From lemma 5we know that ρ(0, λ, µ) = 0. Using this fact in definition 2, we conclude

that θρρ (0) = Vd . On the other hand, θ (0) = Vp. The proof follows now from remark 4. ¤

From the above proof, we conclude that weak duality is equivalent to θρρ (0) 6 θ (0).

Analogously, strong duality (or zero duality gap) can be shown to be equivalent to the identity

θρρ (0) = θ (0). This fact is used to prove the first main result of this section, which is stated

in theorem 9 after verifying two auxiliary results.

Lemma 7. If (λ, µ0) ∈ ∂ρ,εθ (0), then (λ, µ) ∈ ∂ρ,εθ (0), for every µ > µ0.

Proof. The assertion follows from the definition of the ǫ-abstract subgradient ∂ρ,εθ (·), together
with lemma 5 (i) and the fact that ρ(z, λ, ·) is a monotone decreasing function. ¤

Lemma 8. The following assertions hold true.

(a) For all ε > 0 it holds ∂ρ,εθ (0) 6= ∅.

(b) Let (λ̄, µ̄) ∈ dom(θρ ) be given. For every ε > 0 there exists a µ0 = µ0(ε) such that

(λ̄, µ) ∈ ∂ρ,εθ (0), for all µ > µ0.

Proof. We already observed that θ is lsc at z = 0, as well as dom(θρ ) 6= ∅ (see remark 4).
These facts together with lemma 5 guarantee the assumptions of [30, theorem 5.2.1], from

which the desired results follow. ¤
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Theorem 9. The Lagrangian functional GL,α has no duality gaps.

Proof. The weak duality property was already established in lemma 6. Therefore, in order to

prove strong duality, it remains to verify that θρρ (0) > θ (0).

Let ε > 0 be given. Lemma 8 guarantees the existence of an element (λ̄, µε) ∈ ∂ρ,εθ (0).

Thus, from the definition of ε-abstract subgradients, it follows that

θ (z) − ρ(z, λ̄, µε) > θ (0) − ρ(0, λ̄, µε) − ε = θ (0) − ε , ∀z ∈ L2(Ä). (15)

Hence, it follows from lemma 5 that

θρρ (0) = sup(λ,µ){ρ(0, λ, µ) − θρ (λ, µ)} = sup(λ,µ){−θρ (λ, µ)}
> −θρ (λ̄, µε) = infz{θ (z) − ρ(z, λ̄, µε)} > θ (0) − ε.

Since ε > 0 is arbitrary, the desired inequality follows. ¤

In what follows, we concentrate on the second main result of this section, namely the

existence of multipliers. The precise definition of ‘generalized Lagrangian multipliers’ follows

Definition 3. (Exact penalty representation) A vector λ̄ ∈ L2(Ä) is said to support an exact

penalty representation for the problem of minimizing F̃α if there exists a µ0 > 0 such that

θ (0) = Q(λ̄, µ) and argmin(φ,c j )F̃α(φ, c j) = argmin(φ,c j )GL,α(φ, c j; λ̄, µ) , (16)

for all µ > µ0. (Alternatively, such a vector λ̄ is said to support an exact penalty representation

for the problem of minimizing Fα under the constraint K(φ) = 0.)

A proof of existence of generalized multipliers in the sense of definition 3 is given in

theorem 11, which is stated after the verification of an important auxiliary result.

Lemma 10. Let (λ̄, µ̄) ∈ dom(θρ ) be given. There exists µ̂ > 0 satisfying

θ (z) > θ (0) − 〈λ̄, z〉 − µ̂‖z‖L2
, ∀z ∈ L2(Ä).

Proof. The existence of an element (λ̄, µ̄) ∈ dom(θρ ) follows as in the proof of lemma 8.

Define µ̂ := max{1,
∥∥λ̄

∥∥
L2

}. Thus, the estimate −〈λ̄, z〉 − µ̂‖z‖L2
6 (

∥∥λ̄
∥∥

L2
− µ̂) ‖z‖L2

6 0

holds true for all z ∈ L2(Ä). Now, we conclude from (15) that θ (z) > θ (0) > θ (0) − 〈λ̄, z〉 −
µ̂‖z‖L2

, for all z ∈ L2(Ä). ¤

Theorem 11. There exists a λ̄ ∈ L2(Ä) supporting an exact penalty representation for the

problem of minimizing Fα under the constraint K(φ) = 0.

Proof. Note that: (i) the set of optimal solutions of the primal problem is nonempty

(consequence of assumption (A4)); (ii) the dualizing parametrization function f (φ, c j; ·) is
lsc at z = 0 for every (φ, c j) (follows from the definition of f ); (iii) the perturbation function

ρ is lsc at z = 0 (see remark 4); (iv) There exists an element (λ̄, µ̄) ∈ dom(θρ ) (see remark 4).

These facts together with lemma 5 guarantee the assumptions of [30, theorem 5.2.5].

According to this theorem, the existence of λ̄ ∈ L2(Ä) supporting an exact penalty

representation for the problem of minimizing F̃α is equivalent to the existence of an open

neighborhood W ⊂ L2(Ä) of 0 and some µ0 > 0 such that θ (z) > θ (0) + ρ(z, λ̄, µ0), for

all z ∈ W . However, due to lemma 10, this last inequality is satisfied at any neighborhood

W ⊂ L2(Ä) of 0. ¤

11
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Remark 5. The first identity in (16) is equivalent to inf(φ,c j ) F̃α(φ, c j) =
inf(φ,c j ) GL,α(φ, c j; λ̄, µ). Thus, the existence of a vector λ̄ ∈ L2(Ä) satisfying definition

3 is sufficient to guarantee that the problems of minimizing the functionals F̃α(·, ·) and
GL,α(·, ·; λ̄, µ) over (φ, c j) ∈ L2(Ä) × R

2 are equivalent (i.e. both functionals have the same

minimizers are the same as well as the same minimal values). Consequently, optimal solutions

of the constrained optimization problem (8) can be obtained by solving the unconstrained

optimization problemmin(φ,c j ) GL,α(φ, c j; λ̄, µ). However, a pair(λ̄, µ0) satisfying definition

3 has to be found first.

Another consequence of the first identity in (16) is the following fact:

Vp = θ (0) = Q(λ̄, µ) 6 sup(λ,µ) Q(λ, µ) = Vd .

From this inequality and the weak duality property established in lemma 6, the strong duality

property follows. Therefore, theorem 9 can be interpreted as a corollary of theorem 11.

Note that the existence of (generalized) multipliers justifies the implementation of dual

algorithms in order to approximate the solutions of the constrained optimization problem in

(8). These algorithms allow the simultaneous determination of the optimal solution as well as

the generalized multipliers.

3.1. An iterative algorithm based on the augmented Lagrangian method

In the following, we propose a numerical method based on the PCLS approach and augmented

Lagrangian for solving the inverse problem in (5). This is an iterative method which exploits

the definition of abstract multipliers in definition 3, generating a sequence of approximate

solutions to the constrained optimization problem in (8).

More precisely, our method can be interpreted as an Usawa-type iteration [21, 25, 35, 26],

which aims to find an L2-vector λ̄ satisfying definition 3 and (simultaneously) find a pair

(φ̄, c̄ j) ∈ argmin(φ,c j )GL,α(φ, c j; λ̄, µ).

Note that in definition 3 any µ large enough (namely µ > µ0) can be used to characterize

λ̄ ∈ L2(Ä) as a vector supporting an exact penalty representation for the problemofminimizing

Fα under the constraint K(φ) = 0. Therefore, in our algorithm we do not update the value

of the µ along the iteration. The outcome of our numerical experiments are not strongly

influenced by the choice the (constant) penalty factor µ.

Starting with initial guesses (φ0, c
j

0; λ0) and µ > 0 sufficiently large, the proposed

iterative method consists essentially of two parts: (i) given the current iterate (φk, c
j

k
; λk), the

update of the components (φk, c
j

k
) is computed through the minimization of GL,α(·, ·, λk, µ)

with respect to (φ, c j), i.e.
(
φk+1, c

j

k+1
)
:= arg min

(φ,c j )
GL,α(φ, c j; λk, µ), (17)

(ii) the Lagrange multiplier λk is updated giving a gradient step of GL,α(φk+1, c
j

k+1, ·, µ) with

respect to λ, i.e.

λk+1 := λk + µ K(φk+1). (18)

In our numerical implementations, we follow the approach in [32]. A solution of the

minimization problem (i) is approximated by solving the set of optimality conditions

∂

∂φ
GL,α(φ, c j; λk, µ) = 0 ,

∂

∂c j
GL,α(φ, c j; λk, µ) = 0. (19)

For the implementation of step (ii), this is a simple gradient step with respect to λ of the

functional GL,α which can be computed in an explicit way.

12
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Remark 6. In order to solve the set of optimality conditions in (19), an artificial time variable

t is introduced and the PDE

∂φ

∂t
= ∂

∂φ
GL,α(φ, c j; λk, µ) ,

∂c j

∂t
= ∂

∂c j
GL,α(φ, c j; λk, µ) = 0,

is solved until it reaches a steady solution. This steady solution is also a solution of the

optimality conditions (19) [32, 33].

In the numerical realizations presented in section 5, we use a forward Euler method for

calculating a steady solution of the PDE above. This computational scheme corresponds to an

inner iteration for updating the pair (φ, c j):

4. Numerical experiments: setup and algorithms

In this section, we discuss the numerical implementations of iterative methods based on the

approaches discussed in sections 2 and 3. As a benchmark problem we consider the inverse

potential problem (IPP), which is similar to the one considered in [20, 39, 13, 22, 40].

It is worth noting that generalizations of this inverse problem have applications in inverse

gravimetry, EEG, ECG and EMG (see [22–24, 31, 38–41] and the references therein).

4.1. The inverse potential problem

The forward problem consists of solving on a given Lipschitz domain Ä ⊂ R
n, for a given

source function u ∈ L2(Ä), the Poisson boundary value problem

− 1w = u , in Ä, w = 0 on ∂Ä. (20)

This problem can be modeled by the operator F : L2(Ä) → L2(∂Ä), F(u) := wν |∂Ä [24],

wherew ∈ H1
0 (Ä) is the unique solution of (20). The corresponding inverse problem is the so-

called IPP, which consists of recovering an L2-function u, from measurements of the Cauchy

data of its corresponding potential on the boundary of Ä.

Using this notation, the IPP can be written in the abbreviated form F(u) = yδ , where the

available noisy data yδ ∈ L2(∂Ä) have the same meaning as in (2).

It is worth noting that this inverse problem has, in general, non-unique solution [22].

Sufficient conditions for identifiability are given in [23]. For issues related to redundancy of

data as well as for an example of non-identifiability we refer the reader to [22]. A generalization

of this inverse problem, with the Laplacian replaced by a general elliptic operator, appears in

many relevant applications including: inverse gravimetry [31, 24], EEG [15], and EMG [41].

In our experiments, we follow [13] in the experimental setup, selectingÄ = (0, 1)×(0, 1)

and assuming that the unknown parameter is a piecewise constant function of the form

u = 1+χD, where D ⊂⊂ Ä. In particular, we allow piecewise constant functions u supported

at domains consisting of several connected components. It is worth mentioning that, for this

class of parameters, no unique identifiability result is known in the literature [24].

4.2. An algorithm based on PCLS and Tikhonov method for the IPP

In the following, we present a numerical algorithm for solving the IPP based on the PCLS

approach and the Tikhonov method, cf discussed in section 2.1.

First, a constant N ∈ N is chosen in order to control the operator splitting scheme. Each

step of this iterative method consists of four parts (see table 2). The first half of the operator

splitting scheme consists of parts (1), (2) and (3). The second half of the operator splitting

scheme consists of part (4), as described below.
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Table 1. Forward Euler method for updating the pair (φ, c j ). This inner iteration corresponds to

step part (i) of the iterative algorithm based on the augmented Lagrangian method.

1.Take(φ̃0, c̃0) = (φk, ck); and ε > 0 a specified precision.

2.Compute the inner iteration φ̃n+1 = φ̃n − 1φ
∂

∂φ
GL,α(φ̃n, c̃ j

n; λk, µ), c̃
j

n+1 =
c̃ j

n − 1c j
∂

∂c j GL,α(φ̃n, c j
n; λk, µ), for n = 0, . . . , n⋆, where n⋆ ∈ N is such that the pair (φ̃n⋆ , c̃

j

n⋆ ) satisfies

the stop criteria | ∂

∂φ
GL,α(φ̃n⋆ , c̃

j

n⋆ ; λk, µ)| < ε, and | ∂

∂c j GL,α(φ̃n⋆ , c
j

n⋆ ; λk, µ)| < ε.

3.Take(φk+1, c
j

k+1) := (φ̃n⋆ , c̃
j

n⋆ ).

Table 2. Iterative algorithm based on the PCLS approach and the Tikhonov method for the IPP.

1. Evaluate the residual rk := F(Ppc(φk, c
j

k)) − yδ = (wk)ν |∂Ä − yδ , where wk solves

1wk = Ppc(φk, c
j

k) , in Ä ; wk = 0 , at ∂Ä.

2. Evaluate hk := F ′(Ppc(φk, c
j

k))
∗(rk) ∈ L2(Ä), solving

1hk = 0 , in Ä ; hk = rk , at ∂Ä.

3. Update φk, c
j

k according to (11), (12) and calculateφk+1/2, c
j

k+1/2 from

φk+1/2 := φk − (c2k − c1k )hk − α

2
(c2k − c1k )sk,

c1k+1/2 := c
j

k −
∫

Ä
φkhk − α

2

∫
Ä
(1− φk)sk,

c2k+1/2 := c
j

k −
∫

Ä
φkhk − α

2

∫
Ä

φksk,

where sk := ∇·
[
∇Ppc(φk, c

j

k)/|∇Ppc(φk, c
j

k)|
]
.

4. I f (k mod N) = 0 then
Update φk+1/2, c

j

k+1/2 according to (13), (14) and calculate φk+1, c
j

k+1 Else

Take φk+1 = φk+1/2, c
j

k+1 = c
j

k+1/2.

(1) The residual rk ∈ L2(∂Ä) of the iterate (φk, c
j

k
) is evaluated (this requires solving one

elliptic BVP of Dirichlet type).

(2) The L2-solution hk of the adjoint problem for the residual is evaluated (this corresponds

to solving one elliptic BVP of Dirichlet type).

(3) The level-set function φk and the level values c
j

k
are updated according to the first part of

the operator splitting scheme (i.e. with respect to the Functional G1α); this results in the

computation of φk+1/2, c
j

k+1/2.

(4) If the iteration counter k is not a multiple of N, then skip the second part of the operator

splitting scheme and set φk+1 := φk+1/2, c
j

k+1 := c
j

k+1/2.

Otherwise, the level-set function φk+1/2 and the level values c
j

k+1/2 are updated according

to the second part of the operator splitting scheme (i.e. with respect to the functional G2α); this

allows the computation of φk+1, c
j

k+1.

4.3. An algorithm based on PCLS and augmented Lagrangian for the IPP

In what follows, we present a numerical algorithm for solving the IPP based on the PCLS

approach and the augmented Lagrangian method, cf discussed in subsection 3.1.

First, an initial guess (φ0, c
j

0; λ0) is chosen for the level-set function, the level values, and

Lagrange multiplier. Each step of this iterative method consists of two parts (see table 3).

(1) The first part, consists of the inner iteration (1.1)–(1.5) and corresponds to the forward

Euler method described in table 1 for approximating a minimizer of the functional

GL,α(·, ·, λk) in (17). This inner iteration starts at (φ̃0, c̃
j

0) := (φk, c
j

k
) and produces a

sequence {(φ̃n, c̃
j
n)}. The calculation of this sequence is stopped at step n = n⋆, when

(φ̃n⋆ , c̃
j
n⋆ ) solves the optimality conditions (19) up to an a priori chosen precision ε > 0.

14
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Table 3. Iterative algorithm based on the PCLS approach and augmented Lagrangian method for

the IPP.

1. Update of the pair (φk, c
j

k):

1.1 Take n = 0 and (φ̃0, c̃
j

0) := (φk, c
j

k);

1.2 Evaluate the residual rn := F(Ppc(φ̃n, c̃ j
n)) − yδ = (wn)ν |∂Ä − yδ, where wn solves

1wn = Ppc(φ̃n, c̃ j
n) , in Ä ; wn = 0 , at ∂Ä.

1.3 Evaluate hn := F ′(Ppc(φ̃n, c̃ j
n))

∗(rn) ∈ L2(Ä), solving
1hn = 0 , in Ä ; hn = rn , at ∂Ä.

1.4 U pdateφ̃n, c̃ j
n from

φ̃n+1 := φ̃n − (c̃2n − c̃1n)hn − α

2
(c̃2n − c̃1n)sn − λkK(φ̃n),

c̃1n+1 := c̃ j
n −

∫
Ä
(1− φ̃n)hn − α

2

∫
Ä
(1− φ̃n)sn,

c̃2n+1 := c̃ j
n −

∫
Ä

φ̃nhn − α

2

∫
Ä

φ̃nsn,

where sn := ∇·[∇Ppc(φ̃n, c̃ j
n)/|∇Ppc(φ̃n, c̃ j

n)|].
1.5 If | ∂

∂φ
GL,α(φ̃n, c̃ j

n; λk)| < ε and | ∂

∂c j GL,α(φ̃n, c̃ j
n; λk)| < ε

Then n⋆ := n; update (φk+1, c
j

k+1) = (φ̃n⋆ , c̃
j

n⋆ )

Else n := n + 1; go to 1.2 2. Update the Lagrange multiplier λk+1 = λk + µK(φk+1).

Note that λk remains fixed during this inner iteration. When n = n⋆ is reached we update

(φk+1, c
j

k+1) = (φ̃n⋆ , c̃
j
n⋆ ).

(2) The second part of the iterative step corresponds to the explicit gradient step in (18).

Note that, for each λk, this inner iteration corresponds to a full run of the algorithm

in table 2. At a first glance, this may be seen as a draw back of this algorithm based on the

augmented Lagrangian method. However, some relevant facts should be observed at this point.

• Our numerical experiments show that the overall performance of the method is not

influenced by the fact that the functional GL,α(·, ·, λk) in (17) is not precisely minimized

in each realization of step part (1). Therefore, accurate results can be computed using

relatively large values of ε in 1.5 (see table 3).

• Moreover, differently from the algorithm in table 2, there is no need to use the operator
splitting scheme in the implementation of the inner iteration. Therefore, it takes the inner

iteration in step part (1) only a small number of steps to enforce the constraintK(φ̃n) = 0.

Consequently, the number n⋆ of steps effectively computed in (1.1)–1.5) remains small along

the outer iteration6, and computational effort needed to perform each step of the algorithm in

table 3 is comparable to the effort needed to execute one step of the algorithm in table 2.

5. Numerical experiments: IPP with exact and noisy data

5.1. First numerical example: exact data

In this first numerical experiment, we aim to identify the right-hand side u of (20) from the

knowledge of the exact data y = wν |∂Ä. We assume that the level values c1 = 0, c2 = 1 are

given and only the support of u has to be identified.

The numerical investigation of this slightly simpler setup of the IPP (with known level

values c j) proved to be rich enough to establish a comparison between the performance of the

algorithms discussed in sections 2 and 3, as we shall see below.

The exact data y = F(u) is obtained by solving numerically the elliptic boundary value

problem in (20) at a very fine grid (the word ‘exact’ here means: up to the precision of the

6 In the computations presented in section 5, n⋆ was never larger than 5.
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Figure 1. First experiment: the picture on the left-hand side shows the coefficient uexact to be

reconstructed in subsections 5.1 and 5.2. The center picture shows the coefficient uexact to be

reconstructed in subsection 5.3. On the right-hand side, the initial configuration for the level-set

function used in the implementation of all numerical discussed in this paper.

Figure 2. First experiment: PCLS with Tikhonov method and constant µ = 0.001. On the first

line, plots of φk, for k = 200, 800, 2000, for the operator splitting method. The pictures on the

second line show the corresponding iteration error.

numerical method used for solving the direct problem). In order to avoid inverse crimes, the

direct problem (20) is solved on an adaptively refined finite element grid with 8.804 nodes. On

the other hand, in the numerical implementation of our iterative methods, all boundary value

problems are solved at an uniform grid with 545 nodes (33 nodes at each boundary side).

In figure 1, the solution uexact of the inverse problem is plotted. Moreover, the initial guess

for the level-set function φ0(x) is also plotted (all numerical methods implemented below use

this function φ0 as initial guess). Note that the support of uexact is a non-connected proper

subset of Ä, what represents a challenge for most classical level-set methods.

In order to test the performance of the Tikhonov method with operator splitting scheme

(see subsection 2.1), two distinct strategies of choice for the parameter µ are implemented:

(i) A constant small value (µ = 0.001) is used (see figure 2).

(ii) The iterative method is started with µ = µ0 = 0.001; and the value of µ is increased by

1% every time the 2nd part of the operator splitting scheme is called (see figure 3).

In both implementations, the constant N = 8 is chosen to control the frequency of the

operator splitting scheme, i.e. the second step of the splitting scheme is called once, after every

eight steps of the algorithm using only the first part of the splitting scheme.
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Figure 3. First experiment: PCLS with the Tikhonov method and non-constant µ. On the first line,

plots of φk , for k = 200, 400, 600, for the operator splitting method. The pictures on the second

line show the corresponding iteration error.

In figure 2, the evolution of the Tikhonov method using the first operator splitting scheme,

with constant µ, is presented. The algorithm is stopped when the residual in (7) drops below

a specified threshold, namely

‖F(Ppc(φk, c j)) − y‖L2 6 10−2 and ‖K(φk)‖L1 6 10−3. (21)

According to our numerical experiments, after reaching this stop criteria (with k = 2000) the

iteration stagnates. At this point, two facts should be observed:

• The level-set function φ2000 as well as the corresponding approximate solution

Ppc(φ2000, c j) are ‘almost’ piecewise constant (see pictures on the right-hand side of

figure 2).

• The shapes of the inclusions are not well reconstructed. As amatter of fact, the approximate
solutions Ppc(φk, c j) produced by this method do not distinguish the existence of two

inclusions in the support of the solution uexact.

In figure 3, the second operator splitting, with non-constant µ, is implemented. Here, the

value of µ is slowly increased along the iteration (see section 2.1). Using this strategy, after

only k = 600 steps this iteration already generates a level-set function φk satisfying the stop

criteria (21).

Remark 7. The constraint ‖K(φk)‖L1 = 0 is enforced after a smaller number of iterations if

we use the implementation with non-constant µ. However, none of the implementations (with

constant/non-constant µ) can distinguish between the existence of two inclusions. As a matter

of fact, after the stop criteria (21) has been reached, the iteration error |Ppc(φk, c j) − uexact| is
essentially the same for both strategies of choice for the parameter µ.

Remark 8.What concerns is the choice of the constant valueµ; some facts should be observed.

(i) If µ > 0 is large (close to one), then the condition ‖K(φk)‖L1 6 10−3 is satisfied after
a small number of iterations. However, the iteration ‘stagnates’ after this point and first

part of the stop criteria in (21) is never reached.

(ii) If µ > 0 is too small (close to zero), then the quality of the final approximate solution

obtained with the splitting method is essentially the same as in (i). However, the number of

iterations needed to reach (the second part of the) stop criteria (21) increases dramatically.
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Figure 4. First experiment: PCLS with augmented Lagrange. On the first line, plots of φk , for

k = 100, 200, 500. The pictures on the second line show the corresponding iteration error. The

pictures on the third line show the corresponding Lagrangian multipliers.

(iii) The constant N ∈ N determines how frequently the operator splitting scheme should be

activated. In our experiments, the best results were produced with N ≈ 10. If N is too

small (e.g., N = 1 or N = 2), then the effects in (i) are again observed, no matter the

choice of µ. On the other hand, if N is too large (for this particular problem this means

N ≫ 10), then the effects in (ii) are observed.

Summing-up. These two experiments indicate that the choice of increasing values of µ

along the iteration indeed produces a faster numerical convergence.Moreover, the approximate

solution computed using increasing values of µ has the same quality as the approximate

solution computed using constant values of µ.

This fact motivated us to investigate the method in section 3 as an alternative to obtain

more accurate numerical approximations for exponentially ill-posed inverse problems as the

IPP.

In what follows, we present a third numerical method for the IPP with exact data:

namely the algorithm based on the augmented Lagrangian method for the PCLS approach

(see subsection 4.3). In figure 4, the obtained sequence of level-set functions φk is plotted, as

well as the corresponding iteration errors |Ppc(φk, c j)−uexact| and the sequence of Lagrangian
multipliers λk. The initial condition for the level-set function is the one in figure 1, and the

initial condition for the Lagrange multiplier reads λ0(x) = 0, x ∈ Ä.

The iteration is stopped according to the criteria in (21) (note that the second inequality has

to be replaced by ‖K(φk)‖L2 6 10−3). Nevertheless, the quality of the approximate solution is
clearly better (compare figure 4 with figures 2 and 3). Not only it is possible to distinguish the
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Figure 5.Second experiment: PCLSwith Tikhonovmethod and non-constantµ. Data contaminated

with 10% randomnoise.On the first line, plots ofφk , for k = 200, 400, 600, for the operator splitting

method. The pictures on the second line show the corresponding iteration error |Ppc(φk, c j )−uexact|.

two inclusions in support of uexact, but the number of iterations needed to reach the stop criteria

(21) is comparable with the fastest operator splitting schemes (the one with non-constant µ).

We performed numerous numerical simulations with distinct choices for the initial guess

φ0. We observed that the number of iterative steps required in order to obtain an acceptable

approximation (up to the same predefined precision) does not depend strongly on the choice

of the initial guess φ0.

5.2. Second numerical example: noisy data

In the following, we consider the same inverse problem as in subsection 5.1, with the solution

shown in figure 1. This time however, the data yδ ∈ L2(∂Ä), with δ > 0, for the inverse

problem are obtained by adding to the exact data y = F(u) randomly generated noise of 10%.

As in the previous experiment, the direct problem is solved at a grid that is finer than the

one used in the numerical implementation of the level-set method. The initial guess φ0 is the

same as in the previous experiment with exact data (see subsection 5.1). As stop criteria, we

used the generalized discrepancy with γ = 2, i.e. the iteration was stopped when for the first

time:

‖F(Ppc(φk, c j)) − yδ‖L2 6 γ δ. (22)

In figure 5, we show the results obtained using the PCLS approach and Tikhonov method

for non-constant µ. The strategy to increase the values of µ is the same one used in the

previous experiment with exact data (see subsection 5.1). In this figure, we show pictures of

the level-set function as well as the corresponding iteration error along the iteration.

In figure 6, we show the results obtained using the PCLS approach with augmented

Lagrange for the same set of contaminated data and same initial guess φ0. Pictures of the

level-set function and the corresponding iteration error are shown in the first and second lines

of this figure.
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Figure 6. Second experiment: PCLS with augmented Lagrange. Data contaminated with 10%

random noise. On the first line, plots of φk , for k = 100, 200, 500. The pictures on the second line

show the corresponding iteration error.

5.3. Third numerical example: non-convex parameter

In this last numerical experiment, we consider once again the IPP in (20). Differently from the

previous two examples, the solution (unknown parameter) is the non-convex inclusion shown

in the center picture of figure 1. The data yδ ∈ L2(∂Ä) is assumed to be exact (i.e. δ = 0) and

the level values c1 = 0 and c2 = 1 are given.

The identification of a similar inclusion using level-set methods was considered by

Scherzer et al in [20], who described the slow behavior of the method for identifying the

shape of the boundary at points close to the non-convex part of the inclusion.

As in the previous examples, the direct problem (20) is again solved on an adaptively

refined finite element grid with 8.804 nodes. However, in the numerical implementation of the

iterative methods, all boundary value problems are solved at an uniform grid with 2.280 nodes

(64 nodes at each boundary side). This is done in order to better capture the non-convex part

of the inclusion.

In figure 7, we show the evolution obtained using the PCLS approach and the Tikhonov

method for non-constant µ. The strategy to increase the values of µ is the same one used in

the previous experiments. In this figure, plots of the level-set function as well as plots of the

corresponding iteration error along the iteration are shown. In figure 8, the evolution of the

PCLS approach with augmented Lagrange is shown. The number of iterative steps required

to obtain an acceptable approximation is similar for both approaches. However, the PCLS

method based on the augmented Lagrange approach produced a more accurate approximate

solution, specially what concerns the shape of the inclusion at the critical part of the

boundary.

6. Conclusions

In this paper, a PCLS framework is proposed for representing the parameter space of ill-posed

problems with piecewise constant solutions. Two distinct approaches for solving the resulting

operator equation (5) are proposed.
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Figure 7. Third experiment: non-convex inclusion. PCLS with the Tikhonov method and non

constant µ. Exact data. On the first line, plots of φk, for k = 50, 100, 500, for the operator splitting

method. The pictures on the second line show the corresponding iteration error |Ppc(φk, c j )−uexact|.

Figure 8. Third experiment: non-convex inclusion. PCLS with augmented Lagrange. Exact data.

On the first line, plots of φk , for k = 50, 100, 500. The pictures on the second line show the

corresponding iteration error.

• The first approach (Tikhonov regularization) corresponds to an extension of the results
obtained in [13] for H1 level-set functions. Convergence analysis is investigated.

• In the second approach (augmented Lagrangian), a concept of generalized multipliers
(supporting an exact representation) is applied, in order to characterize the solution

of a constrained optimization problem related to the original inverse problem. What

concerns convergence analysis, existence of minimizers is proved (following [35, 30]),

but convergence/stability results are still ongoing work.

Both solution approaches lead to iterative methods of level-set type, which are implemented

and tested for a two-dimensional inverse potential problem.

To the best of our knowledge, there is no theoretical result in the literature for constrained

Tikhonov regularization that could be compared to our existence result for the augmented
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Lagrangian method (theorems 9 and 11). In the literature, one can find other theoretically

substantiated methods for constrained Tikhonov regularization, e.g., [3, 22, 26, 35]. However,

none of these papers deal with non-convex discontinuous operator equations (which appear in

our methods due to the PCSL approach). In contrast, the above-mentioned texts make use of

strong regularity assumptions (smoothness and convexity) for the operator equations and for

the penalization terms.
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